Physical Information among Statistically Independent Processes in Coevolutionary Systems

There is a common misconcepton that statistically independent processes cannot share any information. In reality, the absence of statistical codependence does not preclude the existence of physical interactions. In order to bring out and characterize that hidden information in terms of microphysical interaction indicators, Rui A. P. Perdigão has formulated a new set of informaton measures and introduced them in [1]. The findings stress the relevance of taking nonlinear microphysical coevolution into account when formulating information measures, especially when a system is undergoing mixing among subsystems such as in thermodynamic coevolutionary settings.

[1] Perdigão, Rui A.P. (2018): Polyadic Entropy, Synergy and Redundancy among Statistically Independent Processes in Nonlinear Statistical Physics with Microphysical Codependence. Entropy 2018, 20(1), 26; doi:10.3390/e20010026


Beyond Coevolutionary Optimality in Non-Ergodic Statistical Physics: Unveiling The 5th Principle

Meteoceanics chairman Rui Perdigão has launched an international project on Theoretical Thermodynamics and Statistical Physics. The main goal entails the development of the new general principle governing the breach of coevolutionary optimality and unlocking the predictability of post-critical emergence in non-ergodic statistical physics, recently introduced by Rui Perdigão.

The project emerges from his general program on the Mathematical Physics and Predictability of Complex Coevolutionary Systems.

For a start, the record is made straight on coevolution. The current status of the art is dominated by dynamical system formulations that essentially revolve on kinematic geometry – where physics are notoriously absent. However, unlike popular belief, coevolution is not about a history of interaction between variables over time, i.e. it is not about kinematic geometry. Dynamic coupling, scale interactions and feedbacks are important in a dynamical system, but none of them entail coevolution.

Framing coevolution in the light of theoretical physics enables us to elicit not only its governing principles but also the associated thermodynamic optimality. This in turn is fundamental to lift the theory from an optimality-bound fate to a more realistic setting in which optimality itself is challenged. By eliciting underlying mechanisms governing such challenges, we unveil the fundamental laws governing the breach of optimality principles, generalising thermodynamic theory with a new overarching principle.

The links to the classical theories will be done by showing that all four principles of thermodynamics are in essence particular cases of our general principle.

As happens with all our purely scientific projects, this initiative is independent from any commercial, political or academic constraints. Our ultimate quest is the fundamental quest for knowledge.

Even so, the project provides a significant edge to design novel energy solutions, which we develop for trade through Meteoceanics Energy.